
P1: VENDOR/GDW/GAY P2: GCO/FTK/FYJ/GCQ/GGN/FJQ QC: GCQ/FTK/GCO

International Journal of Theoretical Physics [ijtp] PP088-298230 March 8, 2001 16:9 Style file version Nov. 19th, 1999

International Journal of Theoretical Physics, Vol. 40, No. 5, 2001

Black Hole and Cosmic Entropy for
Schwarzschild–de Sitter Space–Time

Wu Yueqin,1,2 Zhang Lichun,1 and Zhao Ren1

Received December 12, 1999

We calculate the free energy and the entropy of a scalar field in terms of the brick-wall
method in the background of the Schwarzschild–de Sitter space–time. We obtain the
entropy of a black hole and the cosmic entropy at nonasymptotic flat space. When the cut-
off satisfies the proper condition, the entropy of a black hole is proportional to the area of
a black hole horizon, and the cosmic entropy is proportional to the cosmic horizon area.

A significant development in physics over the past 30 years is the research of
black hole physics. The area of the event horizon of a black hole can be interpreted
as entropy and the surface gravity can be looked as temperature (Howking, 1972;
Bekensteinet al., 1973). The four laws of a black hole thermodynamics is found
(Bekenstein, 1972; Bekensteinet al., 1973; Smarr, 1973). Hawking’s discovery
of the thermal radiation of a black hole supported the idea that a black hole has
temperature. For the last few years, the research of the black hole temperature has
achieved high perfection. However, the study of the black hole entropy has not
been satisfactory (Frolov and Page, 1993; Unruh and Wald, 1982). Recently, one
of the most intriguing problems in black hole physics has been the study of its
entropy (Cognola and Lecca, 1998; Leeet al., 1996; Solodukhin, 1995a,b; Shen
and Chen, 1999). The brick-wall method has been generally used (’t Hooft, 1985).
’t Hooft examined the statistical property of a free scalar field in the background
of the Schwarzschild black hole by using the brick-wall method and obtained an
expression of entropy in terms of the area of the horizon. Furthermore, ’t Hooft
proved that entropy is proportional to its horizon area. When cut-off satisfies the
proper condition, entropy can be written asS= AH/4. When cut-off approaches
zero, entropy will diverge. He proposed that the divergence was caused by the
infinite density of states near horizon. Afterward, the entropy of every black hole
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was studied in an asymptotic flat space by this method (Cognola and Lecca, 1998;
Lee et al., 1996; Shen and Chen, 1999). But in a nonasymptotic flat space, the
entropy for a black hole still remains, which needs to be solved.

In this paper, we calculate the entropy and the free energy of a free scalar field
near the horizon of a black hole and the universe by using the brick-wall method in
the Schwarzschild–de Sitter space–time. We obtained a relation between entropy
and horizon area: when the cut-off satisfies the proper condition relation between
entropy and horizon of the black hole,SH = AH/4, and the relation between cosmic
entropy and area of the horizon,Sc = Ac/4. When cosmic factor3→ 0, we obtain
the known result (’t Hooft, 1985). In the Boyer–Lindquist coordinate system, the
metric of a Schwarzschild–de Sitter black hole is given by:

ds2 = −(1− 2Mr−1−3r 23−1) dt2+ (1− 2Mr−1−3r 23−1)−1 dr2

+ r 2(dθ2+ sin2 θ dϕ2). (1)

Let3 > 0 and 93M2 < 1, then, the horizon of black hole and the cosmic horizon
are

r+ = 2√
3

cos

(
α + π

3

)
,

r++ = 2√
3

cos

(
α − π

3

)
, and (2)

α = 1

3
arccos(3M31/2).

The surface gravity of a black hole and universe are

κH = 36−1r−1
+ (r++ − r+)(r+ − r−−) and (3)

κc = 36−1r−1
++(r++ − r+)(r++ − r−−), (4)

where

r−− = − 2√
3

cosα

is the negative solution of 3r − 6M −3r 3 = 0. The entropy of a black hole and
universe are

SH = 1

4
AH = πr 2

+ and (5)

Sc = 1

4
Ac = πr 2

++. (6)
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In curved space–time, the massless scalar field yield,

1√−g
∂µ
(√−ggµν ∂νψ

) = 0. (7)

Using the brick-wall method, we can assume that the wave function yields (’t Hooft,
1985)

ψr=r++ε = ψr=L = 0, (8)

wherer+ ¿ L ¿ r++ ε ¿ r+.
ψ of Eq. (7) can be written as

ψ = e−i Et R(r )

r
Yl ,m(θ , ϕ), (9)

and the radial part of Eq. (7) can be written as

A2 d2R

dr2
+
(

2M

r 2
+ 2

3
3r

)
A

d R

dr
+ E2R

−A

(
2M

r 3
+ 2

3
3− l (l + 1)

r 2

)
R= 0, (10)

where

A = 1− 2M

r
− 1

3
3r 2.

By the tortoise-type coordinate transformation

dr∗ = A−1 dr, (11)

the Eq. (10) can be reduced to(
d2

dr2∗
+ E2− Vl (r∗)

)
R(r∗) = 0, (12)

where

Vl =
(

2M

r 3
+ 2

3
3− l (l + 1)

r 2

)
A.

By using WKB approximation, we obtained the solution of Eq. (12):

R(r∗) = ei S(r∗). (13)

FromS′(r∗) = Kl (r∗) =
√

E2− Vl (r∗) and the boundary condition of Eq. (8), we
have ∫

Kl (r∗) dr∗ =
∫ L

r++ε
Kl (r )A−1 dr = nπ. (14)
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The temperature of black hole and universe are (Gibbons and Hawking, 1977)

TH = κH

2π
, Tc = κc

2π
. (15)

In terms of the theory of canonical ensemble, the free energy of a Bose system can
be written as

βF =
∑

E

ln(1− e−βE). (16)

When we look at it as semiclassic and take the energy state as a continuous distri-
bution, we can replace by integration the sum

∑
E

→
∫ ∞

0
d E g(E),

where g(E) is density of states,g(E) = d0(E)/d E; 0(E) is the microstate
number, which is

0(E) =
∑
l ,m

nr (E, l , m) =
∑

l

(2l + 1)nl (E, l )

≈
∫

l
(2l + 1) dl

1

π

∫
Kr (E, l )A−1 dr. (17)

Thus

βF ≈
∫ ∞

0
d E g(E) ln(1− e−βE)

= −β
∫

d E
0(E)

eβE − 1

= 2

3

β

π

∫
d E

eβE − 1

∫ L

r++ε
dr A−2r 2

[
E2−

(
2M

r 3
+ 2

3
3

)
A

]3/2

≈ 2

3

β

π

∫
E3 d E

eβE − 1

∫ L

r++ε
A−2r 2 dr = 2π3

45β3

∫ L

r++ε
A−2r 2 dr. (18)

In Eq. (18), considering 2M/r 3→ 0, whenr À 2M and3, which is a constant
of a very small value, we have∫

A−2r 2 dr = f1(r )+ f2(r )+ f3(r ), (19)
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where

f1(r ) = − 1

a2

[
− r 4

+
(r − r+)(r+ − r++)2(r+ − r−−)2

+ 2r 3
+

(r+ − r++)2(r+ − r−−)2

×
(

2− r+
r+ − r++

− r+
r+ − r−−

)
ln(r − r+)

]
, (20)

f2(r ) = − 1

a2

[
r 4
++

(r − r++)(r+ − r++)2 (r+ − r−−)2
+ 2r 3

++
(r+ − r++)2(r++ − r−−)2

×
(

2− r++
r++ − r+

− r++
r++ − r−−

)
ln(r − r++)

]
, (21)

f3(r ) = − 1

a2

[
r 4
−−

(r − r−−)(r−− − r+)2(r−− − r++)2
+ 2r 3

−−
(r−− − r+)2(r−− − r++)2

×
(

2− r−−
r−− − r+

− r−−
r−− − r++

)
ln(r − r−−)

]
. (22)

When r+ < r < r ++, f2(r ) and f3(r ) can be neglected, since it may be small
compared tof1(r ). We only discussf1(r ).

For the definite integral, we have

f1(r ) ≈ − 12

a

[
− r 4

+
ε(r+ − r++)2(r+ − r−−)2

− 2r 3
+

(r+ − r++)2(r+ − r−−)2

×
(

2− r+
r+ − r++

− r+
r+ − r−−

)
ln ε

]
− 12

a

[
− r 4

+
(L − r+)(r+ − r++)2(r+ − r−−)2

+ 2r 3
+

(r+ − r++)2(r+ − r−−)2

×
(

2− r+
r+ − r++

− r+
r+ − r−−

)
ln(L − r+)

]
, (23)

werea = 1
33. In the right hand side of Eq. (23), the first part of every term is

an intrinsic contribution from the horizon and it diverges linearly asε → 0. The
second part is the usual contribution from the vacuum surrounding the system at
large distances and is of little relevance here. The free energy of a scalar field in
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the background of the Schwarzschild–de Sitter black hole in the approximation is

F ≈ − 2π3r 4
+

45β4a2ε(r+ − r++)2(r+ − r−−)2
+ 4π3r 3

+
45β4a2(r+ − r++)2(r+ − r−−)2

×
(

2− r+
r+ − r++

− r+
r+ − r−−

)
ln ε. (24)

Using the relation between the entropy and free energy, we have

S= β2 ∂F

∂β
(25)

and

SH =
8π3r 4

+
45β3a2ε(r+ − r++)2(r+ − r−−)2

+ 16π3r 3
+

45β3a2(r+ − r++)2(r+ − r−−)2

×
(

2− r+
r+ − r++

− r+
r+ − r−−

)
ln

1

ε
. (26)

From

β = 1

TH
= 2π

κ
= 12πr+
3(r++ − r+)(r+ − r−−)

,

a = 1
33 andr+ + r++ + r−− = 0, we obtain

SH = AH

360βε
+ 3

540

(
r 2
+ − 2r+r−−

)
ln

1

ε
, (27)

whereAH = 4πr 2
+ is the area of the horizon of a black hole. Whenε satisfies the

following relational expression

ε = 3(r++ − r+)(r+ − r−−)

90π12r+
, (28)

we have

S= 1

4
AH + 3

540

(
r 2
+ − 2r+r−−

)
ln

1

ε
. (29)

When3→ 0, Eq. (27) can be reduced to

S3→0 = AH

360βε
.

In this case, if we letε = 1/720πM [13], we get

S= 1

4
AH. (30)

It returns the result of the Schwarzschild black hole.
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The free energy of cosmic horizon can be written as

βF =
∑

E

ln(1− e−βE)

≈ 2π3

45β3

∫ H

r+++h
a−2r 2 dr. (31)

whereh¿ r++, H À r++. We only takef2(r ) of integral expression and obtain
the following expression by a similar calculation:

F ≈ − 2π3r 4
++

45β4a2h(r++ − r+)2(r++ − r−−)2
+ 4π3r 3

++
45β4a2(r++ − r+)2(r++ − r−−)2

×
(

2− r++
r++ − r+

− r++
r++ − r−−

)
ln h. (32)

Using the relation between the entropy and free energy

S= β2∂F

∂β
, (33)

we have

S= 8π3r 4
++

45β3a2h(r++ − r+)2(r++ − r−−)2
+ 16π3r 4

++
45β3a2(r++ − r+)2(r++ − r−−)2

×
(

2− r++
r++ − r+

− r++
r++ − r−−

)
ln

1

h
. (34)

Using

β = 1

Tc
= 2π

κc
= 12πr++
3(r++ − r+)(r++ − r−−)

anda = 31/3, we have

S= Ac

360βh
+ 3

540

(
r 2
++ − 2r++r−−

)
ln

1

h
. (35)

If h satisfies the following relational expression

h = 3(r++ − r+)(r++ − r−−)

90π12r++
, (36)

the cosmic entropy

S= 1

4
Ac+ 3

540

(
r 2
++ − 2r++r−−

)
ln

1

h
. (37)

In this paper, we start with K–G equation in the background of the
Schwarzschild–de Sitter black hole and calculate the free energy and entropy
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of a scalar field near the horizon of a black hole and universe using WKB ap-
proximation and brick-wall method. We find that the entropy of a scalar field is
proportional to the area of the black hole horizon of a black hole near the horizon
of a black hole and it is proportional to the area of the cosmic horizon near the
cosmic horizon.
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